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Figure 3.16 Potential primary or direct global change
impacts on coastal forest in Alaska
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Boreal Forest

Much of the risk to Alaska boreal forest from climate change scenarios associated with global
warming involve (1) decreases in effective moisture sufficient for forest growth, (2) tree
mortality from insect outbreaks, (3) probability of a transition period of large fires, (4)
interference with reproduction of white spruce, and (5) changes caused by thawing of
permafrost.

The effects of a projected warming of 4° C in summer and 5° C in the winter for interior
Alaska (Weller et al. Chapter 2) would depend critically on accompanying changes in
precipitation, if any. Hogg and Hurdle (1995) applied climate changes that would be caused
by a doubling of CO, to 254 climate stations in the boreal forest region of western Canada.
Previous studies have found that the southern boreal forest currently is restricted to areas
where annual precipitation is greater than total water needed by vegetation (potential
evapotranspiration*). They found that an 11% increase in precipitation would not be sufficient
to meet the increased water demand caused by a projected warming of 4° to 5°C. Under such
a climate, half of the western Canadian boreal forest would be transformed into aspen
parkland, in which conifers are absent and aspen is restricted to stunted patches within a
grassland. Aspen parkland occurs in the interior Alaska landscape today as a narrow zone
separating steep south bluff grasslands and boreal forest. Warming of the interior Alaska
climate without an increase in precipitation sufficient to supply water to the forest in the
driest part of the year (the mid and late summer) would probably transform large areas of
productive lowland Alaska boreal forest to aspen parkland.

Insect outbreaks are a dominant disturbance factor in the boreal forest and can cause tree
death over vast areas (Juday 1996, Fleming and Volney 1995). The risk from future global
change to the Alaska boreal forest includes both (1) increased damage from defoliators and
tree-boring insects that have appeared in outbreaks to date, and (2) damage from outbreaks of
insect species that have not been observed to produce landscape-level effects on Alaska’s
forests in the recent past. An example of the latter is the bronze birch borer (Agrilus anxius), a
species which is present in Alaska at relatively low levels today. The bronze birch borer has
been identified as a species that can cause severe damage to paper birch and may be effective
in limiting birch along the southern margin of its distribution (Haak 1996).

The probability of a transition period of large fires in the Alaskan boreal forest is substantial,
largely because (1) overall area burned is well correlated with the average summer
temperature (Figure 3.15), and (2) once ignited, large areas of standing dead forest will be
difficult to keep from burning. Fire is an important disturbance agent in the boreal forest, and
most of the Alaska boreal forest systemn displays adaptations to it. Fire removes organic
accumulations that would otherwise depress site productivity, prepares seedbeds, and renews
early successional vegetation important as browse species for many harvested wildlife
species. The main global change issues associated with fire in the boreal forest are the scale,
timing, pattern, and intensity of fire. Any of those fire disturbance characteristics could pose
unique problems with significant consequences to the forest. Less certain is the fire potential
following a transition period of large fires. The new landscape probably would support a
significantly lower proportion of conifers and instead large areas of relatively pure hardwood
stands that would be relatively fire-resistant. However, a warmer and drier climate might still
cause a significant amount of burning in the new landscape.

“Potential evapotranspiration is the amount of water loss from the land surface and soil both directly and through
vegetation into the atmosphere that a given climate will cause
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The disruption of white spruce reproduction in a warmer and more stressful climate would
have both significant biological and economic effects on the Alaskan boreal forest. Even the
uncertainty over this potential becomes a forest management issue because forests are
managed over the relatively long lifespans of the trees. If reproduction of the desired species
is not certain in the future, forest management plans may need to be adjusted today. To some
degree artificial tree regeneration can mitigate this problem, but issues of costs and other land
management objectives must then be addressed.

Changes to the Alaskan boreal forest that would be caused by thawing of permafrost are
potentially so extensive and so profound that it is difficult to summarize them. The major
pathways of change would involve an unstable transition when surface subsidence from the
melting of the ground ice content would alter ground contours and collect, reroute, and alter
water. Once the thawing had taken place the site productivity should increase substantially,
but the vegetation community that would develop would probably not be similar that which
grew on permafrost (although there is little data on which to base a prediction). The
disappearance of a impervious frozen layer would allow precipitation to infiltrate the ground
much more effectively compared to the tendency of permafrost to shed rain immediately. The
hydrology of streams and rivers would be considerably altered.

The following potential changes in the Alaska boreal forest under the projected climate
change scenarios are summarized according to confidence and degree of impact in Figure
3.17.

¢ A period of widespread insect-caused mortality and severe/extensive forest fires across
interior and southcentral Alaska would occur.

¢ Earlier onset of plant growth in the spring and prolonged growing seasons in the fall
(“shoulder seasons™) will deepen the regional moisture deficit at low elevation forest
sites. The Tanana and Yukon Valleys will become more like the aspen parkland typical
of Edmonton, Alberta.

¢ Aspen, birch, and tamarack forests would experience more frequent and widespread
defoliation by insects, including the large aspen tortrix (Choristoneura conflictana),
spear-marked black moth (Rheumaptera hastata), birch leaf roller (Epinotia
solandriana), larch sawfly (Pristiphora erichsonii), and bronze birch borer (Agrilus
anxius).

¢ Forest regeneration failure and drought-induced tree mortality on low-elevation south
slopes would occur, followed by grassiand expansion.

¢ Forest expansion into tundra would occur westward on the Seward Peninsula.

¢ Forest expansion into tundra would occur upward in elevation in a relatively limited
zone in the Brooks Range, Alaska Range, Chugach Mountains, and Yukon-Tanana
Uplands.

¢ Following the fires, there would be a shortage of white spruce seed for regeneration
because of unfavorable climate, population reduction, and {ree isolation. Newly
regenerating forests will be composed of greater proportions of aspen, birch, grassland,
and shrubland than the current landscape.

¢ Fire frequency would increase in general, and the average fire return interval in any
given forest landscape will be decreased. More frequent fires will help maintain
grassland against forest recolonization.
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4 Permafrost would spontaneously (regardless of surface-disturbing events) thaw in most
locations south of the Yukon River. Effects such as altered drainage and water quality
and tree toppling and death would occur during a transition period while the thawing is
underway. For at least a period of a few decades numerous new thaw ponds and lakes
would form, and methane would be released from the thaw lakes as a result of
anaerobic decomposition of organic matter.

¢ On a regional basis, the change in forest composition from conifer to hardwood would
increase the input of high quality hardwood litter into streams, increasing aquatic
productivity and ultimately fish populations. On an individual site basis, if forest
composition remains stable the quality of hardwood litter produced under warmer,
drier, and elevated CO, conditions would contain increased tertiary compounds and be
of lower quality and locally reduce aquatic productivity.

¢ Ultimate effects of permafrost thawing will occur such as greater plant productivity
because of warmer soil, increased water storage capacity, and lowering of the water
table and drying of soil once thawing is completed.

¢ White spruce cone crops will be produced less frequently because of sustained periods
of warm and dry weather.

¢ Wildland fire frequency may locally decrease once white spruce is significantly
reduced and aspen and paper birch make up a greater proportion of forest cover.

¢ Cold-adapted vertebrate animals that are limited by warm climate factors may
experience poorer productivity and locally abandon current distributions and establish
new distributional limits.

¢ The taiga, especially along its southern extent, could become a net carbon source, not a
carbon sink, resulting in elevated atmospheric CO2 levels because of greater wildland
fire frequency, more widespread fires, higher soil temperatures, and reduced conifer
dominance causing increased carbon decomposition and reduced soil carbon storage.
Along the northern margin of the taiga the opposite could occur.

¢ Widespread changes in land vegetation cover will change the local albedo (reflectivity
of the Earth’s surface). An increased area of newly burned land surfaces will be
associated with increased atmospheric convection, resulting in increased lightning
strikes and local short-term increases in convective precipitation.

4 As climate warms on both sides of the Bering Straits region, the boreal forests of North
America and Eurasia could expand toward each other and initiate an exchange of
organisms, especially the most mobile species such as birds and bird-dispersed plants.

¢ Earthworms may expand their distribution into the boreal regions of Alaska and
significantly increase the efficiency of forest litter decomposition, increasing site
productivity and decreasing carbon storage in the taiga.

¢ Warm-adapted vertebrate wildlife species that are limited by winter cold may
experience higher productivity, survival, and expansion of distributions, and then
produce changes through plant consumption and dispersal activities and other factors.
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boreal forest in Alaska
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3.4 Additional research needed

¢ Determine the kinds of new forests, tundra, and shrublands that will develop following
large scale fire in current and warmer climate conditions.

¢ Identify and obtain monitoring information on plant and animal species that are
expected to expand significantly in abundance or extent or colonize Alaska as a result
of climate change.

4 Identify additional insect species with the potential to experience population buildups
in a warmer Alaska climate and/or a climate that stresses forests and other
economically important vegetation.

¢ Identify the specific factors (climatic, plant-insect chemistry, genetic, forest
management, historic or accidental) that allow or promote the buildup of insects to
damaging outbreak levels on Alaska vegetation.

¢ Conduct more accurate and timely monitoring of forest insect population levels (pre-
and post- outbreak).

¢ Conduct research and monitoring of tree diseases likely in a warmer and/or more
stressful climate.

¢ Initiate research on market and product potentials of Alaska boreal hardwood trees and
their growth characteristics and responses under recent and warmer climates.

¢ Identify wildlife species that are currently or are likely to be negatively affected by
climate warming and landscape change, giving priority attention to important harvested
resources, and depleted or threatened species.

¢ Determine the effects of changing vegetation inputs on freshwater fish stocks and
aquatic productivity.

¢ Determine the likely interactive effects of climate change, such as higher winter
survival of animals leading to change in vegetation composition or structure.

3.5 Mitigation and adaptation measures
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¢ Establish an adaptive forest management policy. Plan and identify now, with public
involvement in advance of events, land allocations that will pre-authorize the
expeditious salvage of wind/fire/insect-killed timber once it has died on areas where
timber management is selected as the eventual land use. Export of insect-affected
timber may not be possible because of quarantine restrictions, so local uses and
markets may need to be developed or enhanced. Identify best management practices to
treat affected landscapes for a variety of future values including timber production.

¢ Design clearcut stand edges in the coastal forest to be more windfirm.,

¢ Design and fund a forest regeneration program to enhance or supplement forest
responses to global warming effects. Prepare to plant increased amounts of local seed
sources of white spruce and to supplement it on managed or salvage logged sites.
Launch a tree improvement program to find the best adapted genotypes of white spruce
in a changing environment.
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¢ When conducting marketing efforts for Alaska forest resources, give priority to
industries that use boreal hardwoods.

# Reduce the number of trees in overstocked managed stands to reflect lower actual
carrying capacity in new higher-stress environments. Manage more carefully to avoid
creating dense stagnant stands that could serve as local initiation points for widespread
tree-damaging insect outbreaks.

4 Promote a diverse mix of tree and other plant species.

4 Maintain highly qualified fire suppression forces, enhance capabilities to apply insect
reduction measures on strategically identified resources of high value, and develop the
ability to rapidly adopt new biological control measures for insect and disease
outbreaks.

+ Establish an integrated system to apply new research and enhanced monitoring
information into the process of adjusting consumption of harvested animal species so
that local and total consumption do not harm species that are coping with rapidly
changing environments.
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